Toward the synthesis of artificial proteins: the discovery of an amphiphilic helical peptoid assembly.

نویسندگان

  • Timothy S Burkoth
  • Eric Beausoleil
  • Surinder Kaur
  • Dahzi Tang
  • Fred E Cohen
  • Ronald N Zuckermann
چکیده

While nature exploits folded biopolymers to achieve molecular recognition and catalysis, comparable abiological heteropolymer systems have been difficult to create. We synthesized and identified abiological peptoid heteroploymers capable of binding a dye. Using combinatorial synthesis, we constructed a library of 3400 amphiphilic 15-mer peptoids on an ultra-high-capacity beaded support. Individual macrobeads, each containing a single peptoid sequence, were arrayed into plates, cleaved, and screened in aqueous solution to locate dye binding heteropolymer assemblies. Resynthesis and characterization demonstrated the formation of defined helical assemblies as judged by size-exclusion chromatography, circular dichroism, and analytical ultracentrifugation. Inspired by nature's process of sequence variation and natural selection, we identified rare abiological sequence-specific heteropolymers that begin to mimic the structure and functional properties of their biological counterparts.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-assembly of ultra-small micelles from amphiphilic lipopeptoids.

Poly(N-substituted glycine) "peptoids" constitute a promising class of peptide-mimetic materials. We introduce the self-assembly of lipopeptoids into spherical micelles ca. 5 nm in diameter as well as larger assemblies by varying the peptoid sequence design. Our results point to design rules for the self-assembly of peptoid nanostructures, enabling the creation of stable, ultra-small peptidomim...

متن کامل

Novel peptoid building blocks: synthesis of functionalized aromatic helix-inducing submonomers.

Peptoids, oligo-N-substituted glycines, can fold into well-defined helical secondary structures. The design and synthesis of new peptoid building blocks that are capable of both (a) inducing a helical secondary structure and (b) decorating the helices with chemical functionalities are reported. Peptoid heptamers containing carboxamide, carboxylic acid or thiol functionalities were synthesized, ...

متن کامل

Peptoids at the 7th Summit: toward macromolecular systems engineering.

Methods for facile synthesis of extraordinarily diverse peptide-like oligomers have placed peptoids at the center of a broad and vibrant area of foldamer science and technology. The 7th Peptoid Summit offered a perspective on the current state of peptoid science and technology and on prospects for engineering supramolecular assemblies that rival the complexity of biomolecular systems. Methods f...

متن کامل

Synthesis of Two Compounds with Self-Assembled Monolayer Properties: Riboflavin 2', 3', 4' , 5' Tetra Octadecanoate & Bis (Phosphatidyl Ethanol) Protoporphyrin IX Amide

Riboflavin and protoporphyrin IX are two molecules that participate in oxidation and reduction reactions in the living cell. Changing some functional groups of riboflavin and protoporphyrin IX can provide compounds with self-assembled monolayer properties with wide applications in designing the molecular electronic devices. In this study, the amphiphilic structure of riboflavin and protopor...

متن کامل

Solid-phase Submonomer Synthesis of Peptoid Polymers and their Self-Assembly into Highly-Ordered Nanosheets

Peptoids are a novel class of biomimetic, non-natural, sequence-specific heteropolymers that resist proteolysis, exhibit potent biological activity, and fold into higher order nanostructures. Structurally similar to peptides, peptoids are poly N-substituted glycines, where the side chains are attached to the nitrogen rather than the alpha-carbon. Their ease of synthesis and structural diversity...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Chemistry & biology

دوره 9 5  شماره 

صفحات  -

تاریخ انتشار 2002